APL: Retinoic Acid and Retinoid Pharmacology, a Breakthrough Today

Zhu G
The Institute of Oncology, Tehran University of Medical Sciences, Tehran

1. Clinical Image

Acute promyelocytic leukemia (APL), a specific characteristic of t(15;17) chromosomal translocation, molecular gene analyses are conclusive in vivo evidence that oncogenic pml/RARα fusion plays a crucial role in APL leukemogenesis [1-3]. Since the introduction of initial 13-cis retinoic acid (13-cis RA) [4], and currently all-trans RA (ATRA) [5] and tamibarotene [6], RA plus chemotherapy or RA plus As2O3 regimen is currently the standard of care [7]. APL has a very good prognosis, with long-term survival rates up to near 70%-90%. The elucidation of the molecular basis of retinoic acid and retinoid pharmacology in APL has been illustrated in several publications [8-11], the detail molecular model of gene regulation had also been proposed by Zhu in 1990s [12-14]. From the following figure clear shown, oncogenic pml/RARα is a constitutive transcriptional repressor to differentiation block at the promyelocyte stage whereas retinoic acid overcome the transcriptional repressor activity of pml/RARα, including the dissociation of repressor complexes N-CoR, SMAT and HDACs from oncogenic pml/RARα. Consequentially, pml/RARα chimera converted receptor from a repressor to a RA-dependent activator of transcription. This transcriptional depression occurs at RARE on pml/RARα DNA binding. The resulting pml/RARα oncoprotein proteolytic degradation occurs through autophagy or the proteasome system (UPS) or caspase 3 or and E1-like ubiquitin-activating enzyme (UBE1L) induction. An effect is to relieve the blockade of pml/RARα-mediated RA dependent promyelocyte differentiation and induce promyelocyte maturation. This earliest proposal has now been demonstrated by structure and functional analysis of oncogenic pml/RARα chimera protein in vitro and in vivo studies [15-27]. This is first described in eukaryotes.

Moreover, this oncogenic receptor pml/RARα is locked in its "off" regular mode thereby constitutively repressing transcription of genes or key enzymes (for examples AP-1, PTEN, DAPK2, PU.1) that are critical for differentiation of hematopoietic cells [28-31]. Whether silencing of these RARE-responsive target genes such as myeloid transcription factors such as C/EBPα, PU.1 or other unknown key enzymes that are really critical for neutrophil differentiation needs to be further identification and under investigation.


forms in acute promyelocytic leukemia. Leukemia. 2007; 21:647-50


